压缩感知
Thu 27 June 2013
压缩感知
Thu 27 June 2013
压缩感知问题源自稀疏表示问题,两者的本质都是要在一定的约束条件下求得欠定方程的最稀疏解。Donoho在这个领域功不可没,也是压缩感知研究领域具有奠基性工作的人物。压缩感知的发现是个传说,2004年加州理工学院教授(现在在斯坦福)的Emmanuel Candes,Donoho的学生,在研究Shepp-Logan Phantom图像,这是医学图像处理领域用来进行仿真测试的标准模拟图像。Candes检查的图像质量非常差,充满了噪声,他想到一种名叫L1-minimization的数学算法能去除掉噪声条纹,结果算法真的起作用了,而且他发现在图像变干净的同时,图像的细节出人意料得完美,简直就像变魔术一样。
Emmanuel Candes后来向加州大学洛杉矶分校的同事陶哲轩介绍了自己的发现,陶哲轩是世界上搞调和分析的顶尖高手之一,于是陶哲轩、Emmanuel Candes和Donoho神牛们完善了理论,联手挖出了Compressed Sensing的大坑。
Go Top